机器学习和人工智能(AI)到底是什么关系?
机器学习是AI的一个子集
机器学习是AI的一个子集
人工智能的范畴还包括自然语言处理、语音识别等方面。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习于1959年提出,指研究和构建一种特殊算法(非某一个特定的算法,包括深度学习),能够让计算机自己在数据中学习从而进行预测,实现算法进化,从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。
机器学习任务主要包括监督学习、无监督学习、概率图模型和强化学习。监督学习的训练中数据是有标签的,即每一个输入变量都有对应的输出变量。模型旨在通过建立输入变量和输出变量之间的关系,来预测输出变量。可以根据输出变量的类型对监督学习进行划分。如果输出变量是定量的,那就是回归问题;如果输出变量是定性的,那就是分类问题。无监督学习中,数据集并没有对应的标签,可粗略划分为聚类和降维。概率图模型以Bayes学派为主。强化学习是让模型以试错的方式在一定的环境中学习,通过与环境交互获得对应的奖励,目标是使得到的奖励最大化,例如交易策略的学习。
可点击下方行行查链接查看 报告全文
www.hanghangcha.com