抖音用户画像:用数据告诉你玩抖音的是什么人
目前正在做其他短视频产品的一个分析报告,曾经做过产品推广,目前在某A字的公司做风险数据管理,正打算重操运营、产品旧业,就自己的实习、工作经验聊一聊关于抖音的用户画像和一些运营及产品方面的愚见,大家看着开心就好,也希望大家积极批评指正。
1. 数据分析目的
截止6月6日,最新数据显示抖音在六月连续霸榜APP Store免费榜四天, 在头腾大战后再次站上APP Store 榜单第一位。
抖音目前已处在产品生命周期的成熟期阶段,根据不同生命周期运营侧重点,就现阶段的抖音而言,主要运营侧重点主要是增长模式、速度。因此在制定符合现阶段的数据评估分析时,也应该围绕提高商业价值和提高用户活跃度这两个方面进行详细的指标监测和分析。
产品生命周期
2. 数据分析方法:聚类分析(Cluster Analysis):
聚类分析(ClusterAnalysis)又称群分析,是根据不同的簇(数组),对样品或指标进行分类的一种多元统计分析方法,它们讨论的对象是大量的样品,要求能合理地按各自的特性来进行合理的分类,没有任何模式可供参考或依循,即是在没有先验知识的情况下进行的。
通俗地说,聚了分析可以帮助运营人员在不清楚数据意义、属性的前提下,通过对数据进行整理、归类,最后根据数据整理出用户特征等运营数据。
聚类分析变量选择的原则是:在哪些变量组合的前提,使得类别内部的差异尽可能的小,即同质性高,类别间的差异尽可能的大,即同质性低,并且变量之间不能存在高度相关。
我们通过日常的认知会对抖音用户给出一个初步认知:年轻群体、女多男少、颜高艺多?那真实的情况是什么呢?今天主要是通过跟多第三方数据平台结合目前对于产品运营、用户分析以及自己做产品推广的工作经验绘制一个抖音画像。并提出一些对于抖音运营发展的想法。
3.常用的用户特征变量有:
人口学变量:如年龄、性别、婚姻、教育程度、职业、收入等。通过人口学变量进行分类,了解每类 人口的需求有何差异。
用户目标:如用户为什么使用这个产品?为什么选择线上下载?了解不同使用目的的用户的各自特征, 从而查看各类目标用户的需求。
用户使用场景:用户在什么时候,什么情况下使用这个产品?了解用户在各类场景下的偏好/行为差异。
用户行为数据:如使用频率,使用时长,客单价等。划分用户活跃等级,用户价值等级等。
态度倾向量表:如消费偏好,价值观等,看不同价值观、不同生活方式的群体在消费取向或行为上的 差异。
4. 分析过程:
目前无法获取抖音短视频的实际用户数据与属性,于是借助互联网的数据平台对抖音用户进行分析。
(数据来源:艾瑞指数)
根据艾瑞数据,抖音短视频的用户目前男女比例基本持平,男性用户48.03%,女性用户占比51.97%。在年龄分布上,我们可以 看到24 岁以下和 25-30岁的用户占比最高,分别占据 27%和 29.03%的比例。也就是说,抖音用户主要以年轻用户为主,男女比例均衡,女性用户略微高于男性用户。
(数据来源:艾瑞指数)
通过用户区域分布数据,我们知道抖音瞅准的是一、二线城市的年轻受众,根据极光大数据 检测到的信息,城市分布数据显示,有超过61.49%的抖音用户居住在一二线城市。
(数据来源:易观智库)
结合数据我们知道抖音用户以居住在一二线城市的年轻用户为主,抖音从产品一开始,便确立了要成为年轻人的音乐短视频社区的定位,并致力于引导年轻用户以音乐短视频的方式进行自我表达。
同时,运营团队认为音乐天然具有很强的表达特性,而短视频更是一种自带流行文化潜质的表 达方式。因此,音乐短视频正好和年轻人的表达诉求相吻合,是一个合适的产品切入点。
(数据来源:七麦数据)
从上述数据可知,VIVO 平台下载量占比 33.3%,OPPO 平台下载量占比 18.6%,应用宝平台下载量占比 18.0%,相比其他平台明显好于其他的安卓应用市场渠道。
(数据来源:易观智库)
(数据来源:易观智库)
从易观数据的用户使用数据来看,抖音的每日人均使用时长 31.23 分钟。用户的使用高峰时段集中在中午 12 点到13点之间和晚上 18 点以后,并在21点左右达到第二次高峰期。
我们也可以通过第三方数据报告来获取一些更全面的数据,从《QuestMobile2018 中国移动互联网春季报告》,从里面我们可以获取到更多的数据信息和其他数据进行对比,进一步了解抖音产品的用户画像。
(数据来源:易观2017年中国移动短视频市场专题分析)
短视频人均单日启动次数从 8月份开始出现明显增长,在 2016年9月突破 8 次,并在年底涨至8.1次;在人均单日使用时长方面,普遍为40分钟左右,12月达到了56.2分钟。
(数据来源:QuestMobile)
短视频平台用户日常消费普遍,对教育学习场景消费较高,汽车拥有比例较高,对财经和商业经营类信息有明显的偏好。
(数据来源:易观智库)
(数据来源:微博指数)
根据新浪微博数据,我们可以看到关注抖音产品的用户标签为喜欢美食和旅游居多,而星座是天蝎和魔蝎两个星座居多。这也是为什么上述分析中提出的挑选逻辑的改变,会出现大量的美食精选视频的出现。
(数据来源:易观智库)
从消费能力可见,抖音产品占比最高是中等消费者32.26%,其次是中高等消费者29.47%。中等消费者,有较强的日常消费偏向的人群,如网购、生活服务、出行等;中高等消费者,有一定的投资性,高端商旅消费偏向的人群。
(自制:用户画像)
通过各种第三方数据平台的用户数据、产品数据,我们直接或者间接地了解用户,根据他们行为特征、个人属性特征,将他们按照不同维度的选择逻辑区分成不同类型,然后从每种类型中抽取出典型特征,赋予人群画像,最终挖掘出不同人群对产品的偏好和潜在需求,以及对品牌的认知程度,从而指导产品运营和产品设计。
以下是个人结合最近APP的使用情况以及目前从各种第三方数据平台获取的数据总结的一些关于产品运营和推广的一些想法:
获取用户:也就是大家通常所说的推广。曾经有过近半年的产品推广经验,产品、运营以及市场最关心的不是APP下载量,而是有效激活客户量。从产品曝光量到点击量再到下载量,最后激活转化成增长用户,每一个环节都有较大比例的用户流失。
深度漏斗
所以在这个层次需要通过分析不同推广渠道(CPM、CPC等)的广告效果,最初相应的广告优化。差的推广渠道带来的大量一次性用户,在中长期上会对其他运营数据造成较大负面影响,比如刷量、刷评论等。好的推广渠道带来的往往都是精准的目标用户,所以对于获取用户的渠道选择非常重要。
提高活跃度:根据微博实时指数可以看出,目前抖音的主要热门话题集中在美食和旅游两个话题,话题过于单一和集中。建议可以在算法上加入个性化推荐,通过统计用户在不同类型短视频的用户行为(停留时长、点赞、转发、评论、关注作者等)判断出用户的口味偏好,在向用户做出视频推荐时可大相应类型视频的权重。增加浏览型用户的激励机制,比如设立转发奖励、视频创作奖励等来提高用户的参与度,让客户不断向深度参与沉淀。
优化产品使用体验:另一个重要的因素是产品本身的使用体验,能否让新用户最初使用的几十秒钟内抓住用户。如果给人的第一印象不好,经常 crash、卡顿,那么用户选择留下的可能性便不太高。建议可以在APP中加入一些负反馈按钮、选项,辅助产品收集用户在使用产品中出现的不好的体验。
用户留存率:每一个产品都需要面对的一个问题就是留存率,留存率不仅可以直接反馈出推广渠道的好坏,还可以间接反应出产品的市场认可度。曾经在做市场推广时面临过这个问题,通过某一个渠道推广获取了大量的用户,但是7日留存率极低,随后在推广效果里加入了日留存率、周留存率、月留存率、周活跃度、月活跃度等监控指标,多维度监控渠道推广效果。同时这些监控能够在用户大量流失前提供预警,为产品的防流失提供数据指导。
更多内容请关注微信公众号:达叔说产品