【ChatGPT-应用篇】基于chatGPT覆盖测试过程的初步探索京东物流技术团队
原标题:【ChatGPT-应用篇】基于 chatGPT 覆盖测试过程的初步探索 | 京东物流技术团队
1、前言
22 年底 ChatGPT 就已风靡行业内外,简单来说,它是基于自然语言生成式 AI 模型,打造的一款聊天机器人。是 OpenAI 于 11 月 30 日推出的最新作品,供公众免费测试。他可以根据用户的提示,模仿类似人类的对话,和普通的智能机器人有天地之别,非常真实。我们跟他说各种内容,比如写代码、汇总周报、写邮件、写诗句、查百科什么的,ChatGPT 都对答如流,根本不在话下。
圈内开始尝试利用 chatGPT 提升工作效率,比如 VSCode,IDE 插件市场迅速上线 ChatGPT,诸多大神也纷纷基于 chatGPT 搭建微信、浏览器插件、客户端等。
如此火爆之势,作为测试人员对此也颇为好奇,简单的人机对话有哪些可以帮助我们测试工作呢?本文主要谈从测试视角,结合测试流程来看 chatGPT 的应用。
2、测试流程介绍
结合团队现有测试流程如下:
我们按照测试流程,拆解具体任务,测试人员在每个环节需要输出什么内容呢?
- 分析需求,编写测试计划,明确测试策略,包含安全、性能等,输出测试排期;
- 提炼出测试点,以功能点具体拆分测试用例,包含冒烟用例、流程用例、异常用例、联调用例等;
- 根据接口定义,提前准备自动化脚本,测试阶段按照业务流程增加断言及脚本调优;
再来细化,测试计划,提炼功能,这些必然需要测试人员通过自己对 PRD 的分析,对业务的熟悉后逐一定制,那 GPT 既然是人工智能对话,那我将总结出的 固定需求 对他进行发问,看看他的产出。
3、GPT 答案评估
编写测试用例
按照提炼出的测试点,以简明扼要的语言与他沟通一轮,
接着,由于 ChatGPT 有记忆功能,它能知道刚才我们让它干了什么,
再给他些引导,让他继续
换一个 GPT 客户端再试一轮呢
上图所示,他的回答基本属于测试基础常识,距离真正的工作中的用例要求还是相差很多,甚至有些答非所问。我问的边界值,等价类,判定表等都没有回答到位,仿佛依然从他所学所会的库里翻找,在拍脑袋随机写用例,而且和最开始问的自营车新增接口仿佛没有特定关联。但用来作为补充和借鉴是非常好的。把他当做搜索引擎来用,结果聚合度高,不用搜索多个页面,自己汇总模板答案。
编写自动化脚本
到了第二步骤,随着测试前置不断推进,我们期望自动化占比冒烟用例的比例逐步提升,那如何能够提升自动化脚本的编写速度,我们来看看 GPT 能不能助我们一臂之力呢?
先来接口自动化的试试
然后同样的场景问问 UI 的呢
如上,他回答问题时会出现偶尔中断情况,需要我们再耐心一点继续发问
如上 GPT 给出了一个简单的线性脚本。他的答案不能直接 copy,可能他的知识库没有覆盖足够的业务场景?
所以干脆我们直接跳过业务,问一个基础登录的示例,看看我们能用到哪些呢?
长截图不方便那我直接 copy 出来代码:
from seLenium import webdriver
import time
设置测览器塑动路径
driver = webdriver.Chrome(executable_path=/path/to/chromedriver)
打开网址
driver.get(http:/example/")
验证用户名和密码输入框是否存在
assert driver.find_element_by_name(username)
assert driver.find_element_by_name(password)
测试无效用户名和密码
invalid_username =fakeuser
invalid_password =fakepass
driver.find_element_by_name(username).send_keys(invalid_username)
driver.find_element_by_name(password).send_keys(invalid_password)
driver.find_element_by_css_selector(button[type="submit"]).click()
检查错误消息是香正碑量示
error_msg= driver.find_element_by_css_selector(,alert-danger).text
assert "用户名或密码不正确" in error_msg
测试正确凭证
valid_username = testuser
valid_password = testpass
driver.find_element_by_name(username).clear()
driver.find_element_by_name(username).send_keys(vaLid_username)
driver.find_element_by_name(password).clear()
driver.find_element_by_name(password).send_keys(valid_password)
driver.find_element_by_name("button[type="submit"]) .click()
验证是否成功跳转到主页
time.sleep(1) 等待页面刷新
assert driver.current_url == http://example.cn/home/
验证是显示用户信息
user_info = driver.find_element_by_css_selector(userinfo).text
assert valid_username in user_info
退出登录
driver.find_element_by_link_text("退出"),click()
关闭浏览器
driver.quit()
selenium 自动化脚本的启动和收尾没太大问题;然后验证用户名密码输入框是否存在,如果不存在就报错了;然后用一个错误的用户名密码 登录了一次,验证提示语是否正确;然后又登录了一次正确的用户名密码,验证是否可以跳转到主页;然后又验证了一下主页的用户名显示元素是否包含用户名;最后点击退出按钮,然后关闭浏览器。
分析以上脚本:
优点:GPT 写的代码基本没有语法问题,支持扫描被测试页面中的几个关键元素的定位;代码注释这点我觉得特别不错,是一个很好的代码规范,可以在我们日常中借鉴;
缺点:其中的正确用户名、密码、主页、主页用户名展示,主页退出按钮等都是 GPT 擅自揣测的且没有提前说明,如果给不懂脚本的人来看是会被忽悠住;
用例脚本太少了,和上面一大堆的用例完全不是一起来的;用例没有引入什么标准框架,比较落后;selenium 的定位写法也比较落后,最新的版本中这种写法是会报错的;
脚本没有分层概念,不能直接复用到现有的成熟框架里。
总结:代码还不能完全落地,仍然需要人来完善,但作为开个头来说还是不错的。
然后,我继续更新问题让其用 unittest 来重写,以便测试 GPT 能做到的极限。
import unittest
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
class LoginTestCase(unittest.TestCase):
def setup(self):
self.driver = webdriver.executable_path=/path/to/chromedriver)
self.driver.get(http://Logout/)
def tearDown(self):
self.driver.quit()
def test_invalid_credentials(self):
测试无效用户名和密码
invalid_usernane = "fakeuser"
invalid_password = "fakepass"
username_input = self.driver.find_element_by_name(username)
password_input = self.driver.find_element_by_name(password)
submit_button = self.driver.find_element_by_css_selector("button[type=submit]")
username_input.send_keys(invalid_username)
password_input.send_keys(invalid_password)
submit_button.click()
检查错误消息是否正确显示
error_msg = self.driver.find_element_by_css_selector(.alert-danger).text
self.assertIn("用户名或密码不正确,error_msg)
def test_valid_credentials(self):
测试正确数据
valid_username=testuser
valid_password=testpass
username_input = self.driver.find_element_by_name(username)
password_input = self.driver.find_element_by_name(password)
submit_button = self.driver.find_element_by_css_selector(button[type="subnit"])
username_input.clear()
username_input.send_keys(valid_username)
password_input.clear()
password_input.send_keys(valid_password)
submit_button.click()
验证是否成功跳转到主页
self.assertEqual(self.driver.current_url,"http://example/")
验证是否显示用户信息
user_info = self.driver.find_element_by_css_selector(.user-info).text
self.assertIn(valid_username, user_info)
def test_remember_me(self):
测试是否记住用户名和密码
valid_username =testuser
valid_password=testpass
username_input = setf.driver.find_element_by_name(username)
password_input = self.driver.find_element_by_name(password)
remember_me_checkbox = self.driver.find_eLement_by_id(remember_me)
submit_button = self.driver.find_element_by_css_selector("button[type=submit]")
username_input.clear()
username_input.send_keys(valid_username)
password_input.clear()
password_input.send_keys(valid_password)
remember_me_checkbox.cLick()
submit_button.click()
验证是否已记住用户名和密码
self.driver.get(http://example/")
username_input = setf.driver.find_element_by_name(username)
password_input = self.driver.find_element_by_name(password)
self.assertEqual(usernane_input.get_attribute("value"),valid_usernane)
self.assertEqual(password_input.get_attribute("value"),valid_password)
再来分析以上脚本,优点:使用了 uniitest 框架;增加了一条测试记住的用例;初始化的代码写在了 setup 可以保证每条用例的低耦合;缺点:数量,场景等仍然远远不足,且没有使用任何高级的写法,没有考虑时间等待等异常风险。 然后我再次提高询问水准,看看其代码程度,代码比较重复度高,截取一些关键点和新的部分:
import unittest
from selenium import webdriver
from selenium.webdriver.common.keys import Keys
class LoginTestCase(unittest.TestCase):
def setUp(self):
self.driver = webdriver.Chrome(executable_path=/path/to/chromedriver)
self.driver.get(http:/example/)
def tearDown(self):
self.driver.quit()
def test_invalid_credentials(self):
测试无效用户名和密码
def test_valid_credentials(self):
测试正确凭据
def test_remember_me(self):
测试是否记住用户名和密码
def test_empty_credentials(self):
测试空用户名和密码
def test_long_credentials(self):
测试过长的用户名和密码
def test_lockout_after_failed_attempts(self):
测试多次失败登录后账户锁定
invalid_username = testuser
invalid_password = wrongpass
username_input, password_input, submit_button = self._get_login_elements()
for _ in range(3):
检查账户是否被锁定
error_msg = self.driver.find_element_by_css_selector(.alert-danger).text
self.assertIn(您的账户已被锁定, error_msg)
def _get_login_elements(self):
获取登录表单元素
username_input = self.driver.find_element_by_name(username)
password_input = self.driver.find_element_by_name(password)
remember_me_checkbox = self.driver.find_element_by_id(remember-me)
submit_button = self.driver.find_element_by_css_selector(button[type="submit"])
return username_input, password_input, remember_me_checkbox, submit_button
if __name__ == __main__:
unittest.main()
继续点评:
优点:用例条数增多,如果继续追问下去,应该还可以增加;有了初级 page-object 模式的影子,元素定位独立出来了;
缺点:代码冗余,没有充分利用好用例规程和并发线程,浪费了很多执行时间。仍然没有考虑到一些网络延迟,卡顿等异常风险的处理。尚无数据驱动和关键字驱动概念。
然后我们继续升级提问文案,让其并发一下:
def test_login(self):
使用多个数据组合测试登录功能
test_data=
[
(username:testuser,password:"testpass",expected_uri:"http://example/",expected_text:"欢迎testuser"},
(username:"fakeuser,password:"fakepass",expected_error:"用户名或密码不正确"},
(username:,password:"",expected_error:"请输入用户名"}
[
threads = []
for data in test_data:
thread = threading.Thread(target=self._perform_login, args=(data,))
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
def _perform_login(self,data):
执行单次登录操作
username_input,password_input,submit_button=self._get_login_elements()
username_input.clear()
username_input.send_keys(data[username])
password_input.clear()
password_input.send_keys(data[password])
submit_button.click()
if expected_error in data:
error_msg = self.driver.find_element_by_css_selector(.alert-danger).text
self.assertIn(data[expected_error],error_msg)
else:
self.assertEqual(data[expected_url],self.driver.current_url)
self.assertIn(data[expected_text],self.driver.page_source)
点评:
优点:上述代码,使用了 thread 库进行多线程并发;巧妙的初步运用了数据驱动的概念,不但用户名密码是不同的,连每次的提示语和 url 都进行了断言;初步运用了关键字驱动,来让每个线程自动判断自身的断言目的。而 po 模式的影子仍然存在;
缺点:多线程的运用没有进行系统的封装,存在较大风险和局限;用例的内容结构比较单一,之前复杂的如测试浏览器记住用户密码等无法参与到这个并发中;线程是按照用例作为基本单位,对需要前后文关联的多用例是无法实现的,(所以需要在线程和用例之间制作新的中间层作为单位比较好);数据分离仍然没有实现。
继续优化提问,看看结果:(代码仍然简化,只留下关键行)
class LoginPage:
def __init__(self, driver):
self.driver = driver
def load(self):
self.driver.get(http:/t/)
def login(self, username, password, remember_me):
输入用户名和密码
username_input, password_input, remember_me_checkbox, submit_button = self._get_login_elements()
点击登录按钮
def get_error_message(self):
return error_msg
def get_user_info(self):
return user_info
def _get_login_elements(self):
获取登录表单元素
return username_input, password_input, remember_me_checkbox, submit_button
class LoginTest(unittest.TestCase):
def setUp(self):
self.driver = webdriver.Chrome(executable_path=/path/to/chromedriver)
self.login_page = LoginPage(self.driver)
def tearDown(self):
self.driver.quit()
def test_valid_login(self):
测试正确凭据登录
test_data = {username: testuser, password: testpass, remember_me: True}
self.login_page.load()
self.login_page.login(test_data[username], test_data[password], test_data[remember_me])
验证是否成功跳转到主页并显示用户信息
def test_invalid_login(self):
测试无效凭据登录
def test_empty_username(self):
测试空用户名登录
class LoginKeywordTest(unittest.TestCase):
def setUp(self):
self.driver = webdriver.Chrome(executable_path=/path/to/chromedriver)
def tearDown(self):
self.driver.quit()
def test_valid_login(self):
测试正确凭据登录
test_data = {username: testuser, password: testpass, remember_me: True}
self._perform_login(test_data)
验证是否成功跳转到主页并显示用户信息
def test_invalid_login(self):
测试无效凭据登录
test_data = {username: fakeuser, password: fakepass, expected_error: 用户名或密码不正确}
self._perform_login(test_data)
检查错误消息是否正确显示
def test_empty_username(self):
测试空用户名登录
点评:
优点:增加了关键字驱动,数据驱动,po 模式,并发等高级用法。
缺点:各种高级用法割裂严重,并没有融合到一起去实现,而是单纯的写了好几个独立的类 demo。
总结:代码直接运行起来还是会有很多问题,需要大量人工矫正。同样在连续的对话中,也需要测试同学自身对代码和框架建设的理解,才能挖掘更深一步 GPT 更多的价值,否则首次发问的答案目前不能提供更多参考。
功能测试阶段
前期准备测试用例,现在开始执行测试,日常工作测试验证预期的三板斧呢?看页面,翻日志,查数据库。
于是,继续找他编写 SQL,查看日志,
增加查询条件再问试试
对于融入执行测试阶段呢,以上发问感觉像有了屠龙刀,但还没掌握对应的功法,他带给我们的回答只是用屠龙刀在砍树,整理问题思路的时间,以刚入门的测试同学的能力都足以完成基础 SQL 的编写。
4、总结
想要让 chatGPT 产出有效的回答,而不是对你 say sorry 需要遵循以下四个原则:
- 提问清晰:尽可能清晰的、完整的描述问题
- 简明扼要:尽量使用简单的语言和简洁的句子来表达问题,目前很多免费插件对描述字数都有限制
- 单一提问:请一个一个的问,而不是把所有问题放在一个问题
- 不要提供敏感信息:不要在问题中提供任何个人敏感信息
从上述实践可以看到,GPT 会帮助你实现一些细节和底层,开发过程我们需要更加注重表层应用和交互使用,日常中有不错的点子和设计,但是没足够的时间去亲力亲为的实现,大量的重复建设代码在浪费自己的精力,有了 GPT 理论上可以短时间内实现爆炸输出。在测试流程的应用,目前我还在初步探索阶段,是否能对团队测试工作提效,还需要进一步的研究,后续会陆续补充,欢迎大家线上线下随时交流。
作者:京东物流 刘红妍
来源:京东云开发者社区 自猿其说 Tech 转载请注明来源
2.投喂内容+引导训练
我是如何用ChatGPT训练创作爆款标题?
经过一段时间的摸索学习,今天通宵训练完成一套用ChatGPT训练创作爆款标题方法。欢迎大家学习交流,废话不多说,直接进入主题,跟着操作和训练,相信小白也可以很快